CeO_{1.5}-stabilized tetragonal ZrO₂

H.Y.ZHU

Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

Ceria-stabilized tetragonal zirconia polycrystals show high toughness and high resistance to the low-temperature ageing degradation. However, ceria is less effective in stabilizing tetragonal zirconia compared to yttria and other trivalent oxides. The tetravalent oxide of CeO₂ can be easily reduced to the trivalent CeO_{1.5}, but phase separations occur leading to the destabilization of the tetragonal phase or the stabilization of the cubic phase. A procedure of high-temperature sintering and low-temperature reduction has been developed for preparing CeO_{1.5}-stabilized tetragonal zirconia. It was found that 9 mol% CeO_{1.5} could stabilize the tetragonal zirconia to room temperature and that the stability region in the CeO_{1.5}-ZrO₂ system was extended to the lower dopant content region. The CeO_{1.5}-stabilized tetragonal zirconia and lower transformability compared to the CeO₂-stabilized tetragonal zirconia with the same dopant mole percentage. The changes in the phase composition, tetragonality and stability caused by the reduction of CeO₂ to CeO_{1.5} have been discussed in relation to the changes of oxygen stoichiometry, which is considered of the first-order importance in the stabilization of polymorphous zirconia.

1. Introduction

Ceria-doped tetragonal zirconia polycrystals show high toughness and high resistance to low-temperature ageing degradation, and is a candidate ceramic for structural applications [1–4]. However, compared to yttria and other trivalent oxides, the tetravalent ceria is less effective in stabilizing the tetragonal zirconia (t-ZrO₂) as well as the cubic zirconia (c-ZrO₂), e.g. a higher mole per cent of ceria must be added to zirconia to stabilize it in the t- or c-phases to lower temperatures. For example, at room temperature, 6 mol % YO_{1.5}-doped ZrO₂ is in the t-phase while 6 mol % CeO₂-doped ZrO₂ is in monoclinic (m) phase. Usually, only at CeO₂ contents higher than 12 mol %, can the doped ZrO₂ exist in the t-phase [1, 2].

It has been recognized that the oxygen stoichiometry is of first-order importance in the stabilization of polymorphous zirconia [5, 6]. The lesser effect of ceria in stabilizing t- ZrO_2 can be understood because the ceria is a tetravalent oxide which introduces much fewer oxygen vacancies into the zirconia lattice, although appreciable non-stoichiometry in ceria exists at higher temperatures [7]. For the trivalent oxidesdoped ZrO_2 , it has been observed that the tetragonal stability region and the tetragonality of c/a are only dependent on the dopant content, but almost independent of their species [8, 9]. On the other hand, adding pentavalent oxides, such as Ta_2O_5 or Nb_2O_5 to the trivalent $YO_{1.5}$ -doped ZrO_2 to compensate for the oxygen vacancies, would cause destabilization of the t-phase [10, 11].

Because ceria can be easily reduced from CeO_2 to $CeO_{1.5}$, we expect that by sintering or heat treatment

in reducing atmospheres, the stability of the CeO₂doped t-ZrO₂ would be increased due to the valence change of Ce(IV) to Ce(III). In a previous study, it was found that reduction heat treatment significantly affected the phase structure and stability of the ceria-yttria-doped zirconia [12]. After the reduction heat treatment in charcoal at 900 °C, the t-m metastable phase boundary at room temperature was greatly shifted to the lower ceria content region and the stability of the t-phase increased. However, at high temperatures (>1000 °C), the reduction of CeO₂ to $CeO_{1.5}$ resulted in phase separations, leading to either destabilization of the t-ZrO₂ [13-15] or stabilization of the c-ZrO₂ [12]. Hence, it seemed impractical to prepare $CeO_{1.5}$ -stabilized t-ZrO₂ by the conventional sintering or heat treatment according to the phase diagrams of the ZrO_2 -CeO_{1.5} system [16, 17].

The objectives of the present work were firstly to develop a procedure for preparing the $CeO_{1.5}$ stabilized t-ZrO₂, and secondly, to study the phase structure and stability in the $CeO_{1.5}$ -stabilized t-ZrO₂ in comparison to the CeO_2 - and $YO_{1.5}$ -doped ZrO₂ systems.

2. Preparation of the CeO_{1.5}-stabilized t-ZrO₂

The sintering temperatures for zirconia ceramics are usually higher than $1200 \,^{\circ}$ C, while the temperatures for reducing ceria are much lower (> $400 \,^{\circ}$ C) [17, 18]. Hence, a two-stage heat-treatment procedure was developed here to prepare the CeO_{1.5}-stabilized t-ZrO₂, e.g. sintering the CeO₂-doped ZrO₂ at high temperature in an oxidative atmosphere (usually in air) and then in situ reducing CeO₂ at a lower temperature in a reducing atmosphere. The high-temperature sintering oxidation atmosphere guarantees the densification of the CeO₂-doped zirconia in the single t-phase region at CeO₂ < 20 mol % according to the ZrO₂-CeO₂ phase diagram [19, 20]. The low reduction temperature is necessary to suppress the diffusional phase separation. It should be chosen as low as possible but still high enough to retain the CeO₂doped zirconia in the t-phase to avoid the possible macro- or micro-cracking resulting from the t-m phase transformation.

It has been observed that the single t-phase is retained in the CeO₂-doped ZrO₂ after reduction heat treatments at temperatures below 1000 °C [12, 14, 15, 21, 22]. As the t-m transition temperature for pure ZrO₂ is about 1100 °C and this temperature is decreased by doping, we expected at 900 °C, the CeO₂doped ZrO₂ specimens at CeO₂ > 3 mol % to be metastably retained in the single *t*-phase. Therefore, in the present work, the sintering temperature was selected as 1400 °C as usual, and the reducing temperature as 900 °C.

The CeO₂-doped ZrO₂ powders with 3, 6, 9, 12, 16 and 20 mol % CeO₂, derived by the coprecipitation method, were pressed into pellets 10 mm diameter and 1 mm thick. The pellets were sintered at 1400 °C for 4 h in air in a quartz glass tube, then cooled to 900 °C and reduced for 4 h in flowing hydrogen (purity > 9.9999%). After the reduction, the glass tube was sealed and withdrawn from the furnace and rapidly cooled to room temperature. This procedure prevented the reoxidation of the specimens during cooling. Detailed heat-treatment specifications are shown in Fig. 1. For comparison, a set of specimens was heat treated in air with the same temperature programme.

3. Characterization of the CeO_{1.5}-stabilized t-ZrO₂

3.1. X-ray photoelectron spectroscopy (XPS) The valence states of cerium and zirconium in the reduced and unreduced specimens were analysed by

Figure 1 Specifications of the heat-treatment procedure for preparing the $CeO_{1.5}$ -doped tetragonal zirconia.

XPS (VG MII). In all the reduced specimens, Ce(IV) is reduced to Ce(III) while the zirconium ion is in its full oxidation state of Zr(IV). The chemical states of cerium and zirconium are independent of the CeO₂ content. Examples of the Ce 3d and Zr 3d spectra are given in Fig. 2 for specimens with 12 mol % CeO₂. The experimental details are the same as given elsewhere [14, 23]. For the unreduced specimen, Ce 3d and Zr 3d spectrum (a) resembles those of CeO_2 and ZrO₂, respectively, indicating that both cerium and zirconium are in the Ce(IV) and Zr(IV) states. For the reduced specimen, the Ce 3d spectrum (b) is greatly changed, which is characteristic of that of pure Ce₂O₃, indicating that the heat treatment at 900°C for 4 h in hydrogen has sufficiently reduced the CeO₂ to CeO_{1.5}, that is, Ce(IV) to Ce(III). On the other hand, the Zr 3d spectrum (b) shows little change. This suggests that the zirconium is not reduced at 900 °C and is retained in the Zr(IV) state. These results are in good agreement with previous studies [14, 23].

All the specimens reduced changed in colour from the original pale yellow to the greenish blue, which corresponds to the colour of ceria and ceria-doped zirconia reduced in hydrogen at temperatures around $1000 \,^{\circ}C$ [14, 18, 24]. Sectional observation shows the colour change occurs throughout the bulk, which demonstrates that the reduction of CeO₂ to CeO_{1.5} has proceeded homogeneously.

3.2. Phase composition

Fig. 3 shows the phase compositions of the pellets determined by X-ray diffraction (XRD) on the as-heat-treated surfaces. For the specimens heat treated in air, e.g. the CeO₂-ZrO₂ system, the t-phase could be stabilized at room temperature only at CeO₂ > 12 mol %. This is inconsistent with the previous results [1, 2]. However, for the specimens reduced, for example the CeO_{1.5}-ZrO₂ system, the stable region of the t-phase is extended to the lower dopant concentration region. For instance, the t-phase is retained fully at 9 mol % CeO_{1.5}. The line

Figure 2 Ce 3d and Zr 3d XPS spectra for $12 \mod \%$ CeO₂-doped ZrO₂, (a) unreduced and (b) reduced, as specified in Fig. 1. (\blacksquare) Ce(IV), (\bullet) Ce(III).

Figure 3 Volume fraction of tetragonal phase versus dopant content for CeO₂-, CeO_{1.5}- and YO_{1.5}-doped ZrO₂; YO_{1.5} data after [24].

of volume fraction of t-phase versus dopant content for $CeO_{1.5}$ -doped ZrO_2 is much nearer that for $YO_{1.5}$ -doped ZrO_2 [24]. This implies that at the same mole percentage, $CeO_{1.5}$ can stabilize the t- ZrO_2 more effectively than CeO_2 .

3.3. Tetragonality

The tetragonality of c/a of the tetragonal phase versus dopant concentration for CeO₂-, CeO_{1.5}- and MO_{1.5}doped ZrO₂ systems is compared in Fig. 4. The tetragonality linearly decreases with increasing dopant concentration. The decrease in tetragonality due to the trivalent oxides $MO_{1.5}$, where M can be yttrium, scandiun, neodymium, samarium, gadolinium and ytterbium, is consistent and more pronounced than that due to the tetravalent oxide CeO_2 . When CeO_2 is reduced to $CeO_{1.5}$, the decrease in tetragonality due to $CeO_{1.5}$ is greatly increased. For example, at 12 mol %, the c/a for CeO₂-doped t-ZrO₂ is about 1.018, while for $CeO_{1.5}$ -doped t-ZrO₂ it is decreased to 1.012. However, $CeO_{1.5}$ is still less effective than the gonality. On the line extrapolation, the tetragonality would be unity at dopant content of 17 mol% for $MO_{1.5}$ -ZrO₂ systems, while for CeO_{1.5}-ZrO₂ system, it is unity at a much higher concentration of 30 mol %. It is obvious that the role of $CeO_{1,5}$ deviates from those of the intrinsic trivalent oxides. The origin for this deviation will be discussed later.

3.4. Transformability

The transformability of CeO_2 - and $\text{CeO}_{1.5}$ -stabilized t-ZrO₂s was compared by determining the m-phase fraction on the ground and liquid-nitrogen (78 K) quenched surfaces of the specimens of 12 mol% $\text{CeO}_{1.5}$ -doped t-ZrO₂ and 12 mol% CeO_2 -doped t-ZrO₂. Grinding was manually performed on SiC

Figure 4 Tetragonality versus dopant content for CeO₂-, CeO_{1.5}and MO_{1.5}-doped ZrO₂. (\bullet) Present work, (\Box) after [2], (\bigcirc) after [12], (\triangle) after [19], (∇) after [20] and MO_{1.5} after [8, 9].

Figure 5 The XRD patterns of (a) 12 mol % CeO₂–ZrO₂ ground, (b) 12 mol % CeO_{1.5}–ZrO₂ ground, (c) 12 mol % CeO₂–ZrO₂ quenched, and (d) 12 mol % CeO_{1.5}–ZrO₂ quenched. Both of the stress-assisted and thermally assisted t-m phase transformations are seen to be suppressed due to the reduction of CeO₂ to CeO_{1.5} by comparing (a) and (b), and (c) and (d) (∇) m-phase, (\bigcirc) t-phase.

paper (120 mesh). The XRD results are shown in Fig. 5.

For the unreduced specimen, grinding induces about 30% t-m phase transformation at the surface,

an asymmetrical broadening of the $(1\ 1\ 1)_t$ line, and the intensity reversal of $(0\ 0\ 2)_t$ and $(2\ 0\ 0)_t$ lines (Fig. 5a), as observed previously [25, 26]. For the reduced specimen, however, grinding causes no t-m phase transformation and no intensity reversal, although a slight asymmetrical broadening of the $(1\ 1\ 1)_t$ line remains (Fig. 5b). Similarly, upon liquid-nitrogen quenching, about 75% t-phase transforms to m-phase in the unreduced specimen (Fig. 5c), while no phase transformation at all was found in the reduced specimen (Fig. 5d). The suppression of both the stress-assisted and thermally-assisted phase transformations in $12\ mol\ \%\ CeO_{1.5}$ -doped t-ZrO₂ indicates that the transformability of the CeO₂-doped t-ZrO₂ is decreased by the reduction of CeO₂ to CeO_{1.5}.

4. Discussion

First we recall that the oxygen vacancy is of first-order importance in stabilizing the tetragonal, as well as cubic, zirconias. The tetravalent CeO₂ can introduce few oxygen vacancies into the zirconia lattice for electroneutrality. Its effect may mainly come from its larger ion size compared with the host zirconium ion ($r_{ce(IV)} = 0.097$ nm, and $r_{Zr(IV)} = 0.084$ nm). When CeO₂ is reduced to CeO_{1.5}, large quantity of stoichiometric oxygen vacancies are introduced into the ZrO₂ lattice. The ionic formula becomes (Zr⁴⁺,Ce³⁺)₁(O²⁻,V⁰_a)₂ from (Zr⁴⁺,Ce⁴⁺)₁(O²⁻)₂, similar to that of YO_{1.5} doping, (Zr⁴⁺,Y³⁺)₁-(O²⁻,V⁰_a)₂. Therefore, the stabilization of t-phase by CeO_{1.5} should correspond to that by YO_{1.5}, approximately, considering that the t-m equilibrium depends primarily on the number of oxygen vacancies and is independent of what has caused the vacancies.

Based on the above considerations, the difference in the tetragonality versus dopant content between the CeO_2 - and $CeO_{1.5}$ -doped ZrO_2 systems can be attributed to the difference in the oxygen vacancies in the two systems. Because the tetragonality is decreased when CeO_2 is reduced to $CeO_{1.5}$, the t-m transformation temperature, M_s , would also be decreased. Therefore, at the same mole percentage, when the CeO₂-stabilized t-ZrO₂ with higher tetragonality, e.g. higher M_s , transforms to m-ZrO₂ above room temperature, the $CeO_{1.5}$ -stabilized t-ZrO₂ could be retained to room temperature owing to its decreased tetragonality, e.g. lower M_s . Thus, the tetragonal stability region in $CeO_{1.5}$ -doped ZrO_2 is extended to a lower dopant concentration compared to that in CeO_2 -doped ZrO_2 . The change in tetragonality can also account for the change in the transformability, as studied by grinding and liquid-nitrogen quenching. It is known that the transformability increases with tetragonality [10, 11]. The t-phase becomes unstable as c/a increases towards 1.020, which corresponds to the b/a ratio of m-ZrO₂ at room temperature. On the other hand, the t-phase becomes stable as c/a approaches unity, which corresponds to the cubic phase. We note that at 12 mol %, the tetragonality of CeO₂- ZrO_2 is about 1.018, while that of $CeO_{1.5}$ - ZrO_2 is about 1.012. The 6 mol % YO_{1.5}-stabilized t-ZrO₂ has a tetragonality of 1.016, in which no t-m transformation could be induced by subzero-cooling, and grinding under the same conditions only causes a 5% t-m transformation [12, 26]. The tetragonality of

Figure 6 Schematic illustration of the metastable phase transformations of c-t' and t-m' in (a) CeO_2-ZrO_2 [8, 9] (a) and (b) $CeO_{1.5}-ZrO_2$. The left-shifted $T_0^{t-m'}$ lines in $CeO_{1.5}-ZrO_2$ are constructed based on the present data of the phase composition and tetragonality. The equilibrium phase diagram of $CeO_{1.5}-ZrO_2$ (---) is constructed referring to [16, 17]. Note that the concentration coordination for the $CeO_{1.5}-ZrO_2$ is twice as large as that for the CeO_2-ZrO_2 .

12 mol % CeO_{1.5}-ZrO₂ (1.012) is much lower than that of 6 mol % $YO_{1.5}$ -ZrO₂(1.016), so that the suppression of grinding-assisted and subzero-cooling-assisted t-m transformation is predictable.

In the present work, we have developed a procedure for preparing the CeO_{1.5}-doped tetragonal zirconia by suppressing the diffusional phase separation(s) in the CeO_{1.5}-ZrO₂ system. Another approach to access the diffusionless transformations is quenching the reduced CeO_{1.5}-ZrO₂ from the melt. A comparison of the diffusionless t-m' and c-t' transformations in the $CeO_{1.5}$ - and CeO_2 -ZrO₂ systems can be made based on the data obtained here. As shown in Fig. 6a, for the CeO_2 -ZrO₂ system, the T_0^{t-m} line would join at 12 mol % CeO₂ at room temperature, while $T_0^{c-t'}$ line would be at a much higher CeO₂ concentration region, because the cubic ZrO₂ could be fully stabilized at room temperature only at $CeO_2 > 60 \mod \%$ [19, 20]. In contrast, it is proposed in Fig. 6b that for the CeO_{1.5}-ZrO₂ system, the $T_0^{t-m'}$ line is shifted to the left and would join at $< 9 \mod \%$ CeO_{1.5} at room temperature, and the $T_0^{c-t'}$ line is also shifted to the left. Considering that in the $MO_{1.5}$ -ZrO₂ systems, the cubic phase is stabilized at room temperature as the tetragonality approaches 1.005, the $T_0^{c-\nu}$ line for CeO_{1.5}-ZrO₂ could be put at about 20 mol % at room temperature as the tetragonality approaches 1.005 at 20 mol% CeO_{1.5}, as shown in Fig. 4. In fact, after arc-melting and fast cooling in argon at $CeO_2 > 15 \text{ mol }\%$, the doped ZrO_2 specimens were fully retained in the cubic phase and the line for tetragonal fraction versus CeO₂ content agrees well with that observed for CeO_{1.5}-ZrO₂ [19]. After being reoxidized in air, both the t- and c-phases of the arcmelted specimens easily transformed to m- and tphases respectively. It is certain that CeO₂, and even ZrO₂ partially, are reduced to CeO_{1.5} and ZrO_{1.5} during arc-melting in argon. These data support our present construction of the metastable phase diagram of the CeO_{1.5}-ZrO₂ system. A possible extension may be made to the ZrO_{1.5}-ZrO₂ system [27]. Owing to the easy redox reaction of CeO_2 , it is expected that there will be uniquely redox-reaction-driven $c \rightleftharpoons t$ and $t \rightleftharpoons m$ transformations in the CeO₂-ZrO₂ system.

Of great interest is that $CeO_{1,5}$ is still less effective in stabilizing tetragonal ZrO₂ and in decreasing its tetragonality, compared with the other trivalent oxides. It has been proposed that this may arise from the possible ion-size effect, in that the Ce(III) ion is the largest compared with the other M(III) ions such as yttrium, neodymium, erbium, etc. EXAFS studies have shown that the location of the oxygen vacancy varies with the size of the dopant cations [28]. As the size of the dopant cations increases, the oxygen vacancy prefers to locate in the vicinity of the foreign cation. Another possible reason may be that the defects of Ce_{Zr} and V_a in the $CeO_{1.5}$ -ZrO₂ system are ionized, which is different from the defects due to the intrinsic trivalent oxides, such as Y_{Zr} and V_a in the $YO_{1.5}$ -ZrO₂ system. The ionized defects Ce'_{Zr} and V_a may be more tightly bonded together to form a complex defect such as $[Ce'_{zr}][V_a]$, so that the tetragonality changes differently in CeO_{1.5}-ZrO₂ from that in other $MO_{1.5}$ -ZrO₂ systems. More detailed studies are needed to clarify the effect of intrinsity of the dopant valence on the tetragonality and the stabilization of the tetragonal and cubic zirconia ceramics.

5. Conclusion

A procedure of high-temperature sintering and lowtemperature reduction has been developed from which $CeO_{1,5}$ -doped tetragonal ZrO_{2} has been successfully prepared. The CeO₂-doped ZrO₂ with 3-20 mol % CeO₂ were sintered in air at 1400 °C in the single tphase region and then reduced in hydrogen at 900 °C at which CeO₂ could be sufficiently reduced to $CeO_{1.5}$, while the diffusional phase separation could be suppressed due to the low mobility of the cations. XPS has verified the reduction of CeO_2 to $CeO_{1.5}$. It was observed that 9 mol % CeO_{1.5}-doped ZrO₂ could be fully stabilized in the t-phase at room temperature. Compared to the CeO₂-doped ZrO₂ system, the tetragonal stability region in the $CeO_{1,5}$ -ZrO₂ system was shifted to the left. The $CeO_{1.5}$ -doped t-ZrO₂ reveals lower tetragonality and lower transformability compared to the corresponding CeO_2 -doped t-ZrO₂ with the same dopant mole percentage. It is seen that due to the reduction of CeO_2 to $CeO_{1.5}$, both the metastable $T_0^{t-t'}$ and $T_0^{t-m'}$ lines were shifted to the lower dopant concentration region. The effects of reduction of CeO₂ to CeO_{1.5} on the phase composition and stability have been explained, based on the first-order importance of the oxygen stoichiometry in the stabilization of polymorphous zirconia. The present work shows that the reduction heat treatment can be additional and/or alternative approach for controlling the structure and properties of zirconia ceramics.

References

- K. TSUKUMA and M. SHIMADA, J. Mater. Sci. 20 (1985) 1178.
- 2. Idem, Bull. Am. Ceram. Soc. 65 (1986) 1386.
- 3. M. HIRANO and H. INADA, J. Mater. Sci. 26 (1191) 5047.
- A. H. HEUER, F. F. LANGE, M. V. SWAIN and A. G. EVANS, J. Am. Ceram. Soc. 69 [3] (1986) i.
- 5. M. HILLERT and T. SAKUMA, Acta. Metall. Mater. 39 (1991) 1111.
- 6. M. HILLERT, J. Am. Ceram. Soc. 74 (1991) 2005.
- "Phase Diagram for Ceramists (VI)" edited by R. S. Roth (The American Ceramic Society, Columbus, OH, 1987) Fig. 6835C, p. 405.
- 8. M. YOSHIMURA, Am. Ceram. Soc. Bull. 67 (1988) 1950.
- M. YOSHIMURA, M. YOSHIDA, T. NOMA and S. SOM-IYA, J. Mater. Sci. 25 (1990) 2011.
- 10. D. J. KIM and T. Y. TIEN, J. Am. Ceram. Soc. 74 (1991) 3061.
- 11. D. J. KIM, ibid. 73 (1990) 115.
- 12. H. Y. ZHU, ibid. to be published.
- 13. K. H. HEUSSNER and N. CLAUSSEN, ibid. 72 (1989) 1044.
- 14. H. Y. ZHU, T. HIRATA and Y. MURAMATSU, *ibid.* **75** [10] (1992) 2843.
- T. HIRATA, H. Y. ZHU, K. NAKAMURA and M. KITA-JIMA, Solid State Commun. 80 (1991) 991.
- A. I. LEONOV, A. B. ANDREEVA and E. K. KELER, Izv. Akad. Nauk SSSR Neorg. Mater. 2 (1966) 137.
- 17. M. YOSHIMURA and T. SATA, Bull. Tokyo Inst. Technol. 108 (1972) 25.
- 18. T. SATA and M. YOSHIMURA, ibid. 84 (1968) 13.

- 19. T. MUROI, J. ECHIGOYA and H. SUTO, Trans. Jpn. Inst. Metals 29 (1988) 634.
- 20. E. TANI, M. YOSHIMURA and S. SOMIYA, J. Am. Ceram. Soc. 66 (1983) 506.
- 21. C. LEACH and N. KHAN, J. Mater. Sci. 26 (1991) 2026.
- H. Y. ZHU, in "Extended Abstracts, The 6th International Conference on Mechanical Behavior of Materials", 28 July-3 August 1991, Kyoto, Japan (The Society of Materials Science, Japan) p. 223.
- 23. H. Y. ZHU and T. HIRATA, Solid State Commun. 84 (1992) 527.
- 24. T. SAKUMA, Y. YOSHIZAWA and H. SUTO, J. Mater. Sci. 20 (1985) 2399.

- 25. H. Y. ZHU, Mater. Sci. Tech., accepted.
- 26. M. V. SWAIN and R. H. J. HANNINK, ibid. 72 (1989) 1358.
- 27. E. G. RAUH and S. P. GRAG, ibid. 63 (1980) 239.
- 28. M. COLE, C. R. A. CATLOW and J. P. DRAGUN, J. Phys. Chem. Solids 51 (1990) 507.

Received 30 October 1992 and accepted 19 October 1993